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FRACTURE PROBLEMS IN POWER LAW VISCOELASTIC MATERIALS

It is intended to continue the fracture work by examining the Mode

III crack in an infinite sheet. Moreover, a ery general moduli

description will be adopted with the Standard Linear Solid (SLS) and

the Power Law (PL) as special cases. The Riemann-Hilbert approach

utilized in the original work can be as effectively utilized here. Though

the last step of actually producing exact, global closed-form expressions

for the field variables is unlikely, it is possible to extract stress

intensity factors and near-tip behavior! It should be noted that the

Weiner-Hopf approach is inadequate for this problem and that, of course,

correspondence principles are inapplicable.

It is also proposed to examine the debonding of an elastic plate on

a visoelastic foundation as a combination of lop ig, fracture, and

lamination. The physical picture would be .d moving along a plate

and a semi-infinite crack (whose tip might be in front of the load!)

moving with it. The viscoelastic media will be very general again.

Coupled field equations for the plate and the halfspace must be solved.

The quantities of interest are the position of the crack tip (and its

stability in a subsequent analysis), the shape of the crack, and its

stress intensity factor. There are also questions regarding the

existence of a solution for all load speeds.

Two papers resulted from the research performed under this con-

tract:

(1) Nachman, A. and Walton, J.R.: Energy Release Rate Calculations

for Interface Edge Cracks Based on a Conversation Integral.

J. Intern'tl. Solids and Structures, in press.

(2) Nachman, A. and Walton, J.R.: Energy Release Rate Cal-

culations for an Interface Mode III Edge Crack Based on a

NOTICE: This document was prepared under the sponsorship of the Air
Force. Neither the U.S. Government nor any person acting on behalf of
the U.S. Government assumes any liability resulting from the use of the
information contained in this document.



Conservation Integral. Paper submitted to J. Intern'tl. Solids

and Structures.

These papers are contained in the Appendix of this report.
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ENERGY RELEASE RATE CALCULATIONS FOR INTERFACE EDGE CRACKS
BASED ON A CONSERVATION INTEGRAL

A. Nachma' . and j. R. Walton*

Introduction

In a recent paper, L. B. Freund [l] demonstrated the usefulness of

the X-integral conservation law in the determination of stress intensity

factors for 2-dimensional cracks in homogeneous elastic bodies with certain

geometric properties. For a detailed discussion of the M-integral and its

special features that permit the applications given by Freund, the reader

is referred to that paper and the references contained therein. Liberal

use will be made in this paper of many of the results derived by Freund.

What is demonstrated here, is that the n-integral can be used to deter-

mine the energy release rate for certain interface cracks in much the same

way as for cracks in homogeneous bodies.

Three observations are needed for this application. The first, due

to Smelzer and Gurtin [2], is that the J-incegral on a small arc about an

interface crack is equal to the energy release rate, as in the homogeneous

case. One difference for cracks in homogeneous bodies is that the J-integral

may also be related to the stress intensity factor, while for interface cracks,

the J-integral is related to a composite stress intensity factor which

has dubious utility. (See Smelzer and Gurtin [2].) The second observation

involves the nature of the far stress field for bonded dissimilar elastic

wedges, and appeals to the analysis presented by Bogy (3] for bonded

dissimilar elastic quarter planes. The third observation is that the

integrand of the -integral is continuous across bonded interfaces lying

41ong radial lines of the chosen coordinate system.

Department of Mathematics, D1d Dominion University, Norfolk, VA. 23508.

Department of Mathematics, Texas A&M t'niversity, :ollege Station, TX 77843

Sponsored by the Jnited States Army ur.-.ez :ontract No. DAAG29-75-C-02 4.
Supported in part by the United States A..- Force under AFOSR Contract
F49620-79-C-0076 and under AFOSR !rant 77-3290.
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Statement and Analysis of the Problem

We present here en extension of the result obtained by 
Freund for the

elastic half-space with an edge crack whose corners are subjected 
to normal

and shear point loads. Specifically, the X-integral conservation law is

applied to the 2-dimensional plane strain problem of two infinite isotropic

elastic wedges with opening angles W' and w", respectively, and with

different elastic properties (exhibited through E', v' and E",v", where

E and V denote Young's modulus and Poisson's ratio), which are bonded

togc:her along one edge except for a crack of length Z extending from

the apex, and whose corners are subjected to a system of normal and shear

point loads, given by P', Q', P" and Q". (See Fig. 1.) An application

of the X-integral conservation law yields a relation among the parameters

P, 9, E, V, Z and the energy release rate of the crack. (Symbols

•.it 3ut primes refer to both materials.) It is clear that the com-

plexity of the problem precludes the determination of the energy release

rate by first solving the corresponding boundary value problem.

The M-integral is given by

M- f(Wnix, - Tkuk,ixi)ds (i)

C

where W is the elastic energy density, ai is the unit normal to C

(which we take to be directed to the right when C is traversed in a given

direction) and Tk  is the traction acting on the material to the left of

C. The stresses a i " i are related to the elastic energy W and the

stra-ns s i a (Ui,j + uj,i)/2 by 2W - aij ui,j where ui denote the

displacements. The traction Tk is given by Tk - a ±i i . The elastic

body is assumed to be in equilibrium without body forces, ie 1. , 0,

and the stress-strain relation is given by ai - . The conservation

law --r H is that M = 0 whenever C is a closed path surrounding a

si= -onnected region in the body.

5
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Consider the integral

x M' + W'

Sf(Wnizx - Tkuklx)ds

f(W'nIxi - T~u' ±xi)ds -+ f cw'n'.;x~ Tj~uj',xi)ds,

where the contours r' and r" are as indicated in Fig. 1 and 7 - 7' J 7".

It follows easily from the discussion by Freund, that there is zero contri-

bution to M from the parts of r along the crack faces and the outside

edges of the wedge. Moreover, the value of % on the vanishingl7 small

arc around the crack tip is Z.d! , where P(Z) is the potential energy of
di.

the wedge with a crack of length 1. (See Rice [4] and Smelzer and Curtin [2].)

Hence, on this small arc, M is the product of the crack length and the

rate of decrease of the energy with respect to crack length.

The contributions to M' and M" from the small arcs around the

corner points of the wedge follow from a general result derived by Freund

for an infinite elastic wedge with corner loads. In particular, from

the small corner arc in r' we obtain the contribution

(i aF 2

(lv) Wo +~ +w W, sinw'- '+ sinmz' +j'--i

and from r"

2 1a 2

E" slnw" + t" sinw"

whre, employing Freund's notation,

7



F ' - -P'cos(w'/2) - Q'sin(w'/2),a

Ft' a P'sin( '/2) - Q'cos(w'/2)

F a" - -e"cos(w"/2) - Q"cas(;"/2),

F " -P"sin(w"/2) + Q"cos(w"/2).

On the bond line, x2 - 0, x1 > Z, the contributions to M from 7' and

7" cancel, since, among the stress and displacement components, only C i

is discontinuous across the interface, and on that line n.x. = 0 (because
1 3.

the interface is radial) and TkUk,iXi ' (Ul, a1 + u2,i 2)xi.

It remains to determ-ine the contribution from the large arc for which

it suffices to know the far field solution for two wedges bonded together

with no crack and with apex loads P' + P" and 0' - Q". From the analysis

presented by Bogy [3] for two bonded quarter planes, it is clear that the

far field is radial. More precisely, if the elastic fields are represented

with respect to polar coordinates (r,8), then ra e and ra r vanish

for large r uniformly in e, whereas r7rr does not. Consequently, on

the large arc we may assume are and ar are zero. It is easy to see

that in this case, to satisfy the equilibrium equations and the compata-

bility equation, we must take for the stress field

a, A. Aese + B sine 0. (2)
rr r re ee

The four constants A', B', A" and B" may be calculated from the four

conditions

U; 0-) - u(r,e - o+), (3)

u'(rS 0 u -) - ((e -),4)

8



try, ( ,)cos(' )d9 + re0 ( r,e)cos ( )de =, -(?' + ?"), (O)

I r

r ar(r,5)sin(-)de + r , (Q' -i"). (6)
J 0 rr

-WI

Equations (3) and (4) assert continuity for the displacements on the bond

line, while equations (5) and (6) express the equilibrium of tractions on

the wedge -w' < 9 < w", 0 < r < R, where R is the radius of the

large arc. A simple calculation shows that (5) and (6) reduce to

A' (l-cos 2') - B' (2'-sin 2~') - A"(l-cos 2") - B"(2W"-sin 2w") - 4 (Q' - Q") (7)

-A'(2w' + sin 2w') + 3'(l-cos 2w') - A"(2w"+sin 2w") - B"(l-cos 2w") - -4(P' + u") (3)

Substitution of (2) into the polar form of the stress-strain law A

followed by the application of (3) and (4) yields the relations

'/B A' /A" - (1 + a)/(1 - ), (9)

-where a is one of the two Dundurs bi-material parameters given by

(See Bogy [3].)

E'(1 - V ' ) - E"(I - v'2) for plane strain

E'(l _ V12 + Er"(l - Vfo a

El - Et' for generalized plane stress.

is mow an easy matter to solve equations (7), (8) and (9) for A', B', A"

and 3". In particular, we obtain

A' M (a(Q' -Q") + b(P' + ?")) (4/d)

B' - (-a(P' + ?") - c(Q' - Q"))(4/d)

9



1 -C.

where a - (1- cos 2)- (- )(1 - cos Z.")

b i-(2w' - sin 2w') - -- )(w - sin 2w")

c - -(2w' + sin 2w') - (-_- (2w" + sin 2w")

2
d - a - bc.

A" and B" may now be calculated from (9).

As observed by Freund, for the stress state (2), the integrand of

M is

2
kk~i I - (l- ) 2

Consequently, the contribution to M from the large arc is

- 2 E" (A"cos + B"sin)d

2 J (Acos8 + B'sin)d + EI-

1 (1 -
2  f(A'cos+ B'sin6)2 +1 + L )  (A'cos + B'sine)de] (10)

MV2- (b(P' + P") 2 + c(Q' - Q,,)2 + 2a(P' + P")(Q' - Q"))(2/d). (1n)

E'Line (10) follows from (9) and the observation that

(-") " t (1 ;v12 whereas, line (ii) is derived by simple but

tedious algebraic manipulations.

10



Combining the contributions to M from the large arc, the two small

arcs at the apex and the arc around the crack tip and appealing to the

conservation law, we obtain

dP _ (1 - V' 2 )  ,,2- 2
+ -(b(P' + )+ c( Q1,)2 + Za(P' + P")(q' - Q"))(2/d)~di

(12)

+ ( (2, - sin 2w') + Q,2 (2w' + sin 2w') + 2P'Q'(cos 2w' - 1))/(w'2-sin2W')

+.1(1-) (P" 2 (2w"-sin Z") + Q, 2 (2w" + sin 2w") + 2P"q"(cos 2w"-l))/( "2-sin2W")

An important special case of (12) is that of two bonded dissimilar quarter

planes with an edge interface crack. Setting w' - w" - '/2 in (12) yields

dP U 2 1(p + p11)2 + (Q - Q)2 0 (P, + ,,) (Q' _ Q"))(1 + a)/((2a) 2- T2(11

2 1 + a.,2.+ -1 + a- ,,2- 4 + *+)p,L))/(.r (13

2((P,2 +'Q, 2 + (t-- - -. (PQ' + -4)]

It should be noted that if P' - P" -= P, Q' - Q" B Q and a - 0, then

(13) reduces to the result obtained by Freund for identical quarter planes.

Of course, when a - 0, the response of the bonded quarter planes is the same

as for a homogeneous half-space; as described by Dundurs [5], the two quarter

planes are "consonant in tension parallel to the interface."

Another interesting case in (12) is when a - -'_. Due to symmetry we consider

only a -1 corresponding to which (12) becomes

11



2L.dP (1 - ') ,  2 ,2 2-' 2 [P'(2w-sin 2W') + (2w'+sin 2w') + 2?'q'(cos 2w'-l))/(' "sin

It should not be surprising that in (14) only P' and Q' appear, since

a - -1 corresponds to E" .

It should also be noted that for P' P P" P, Q' Q" Q and

we w" - ./2, the level curves of Z2 in the (?,Q)-plane are ellipses
di.

(straight lines if a - 0) centered at (0,0). From this we may conclude

as did Freund, that crack extension may result when the unloading of P and

Q occurs along certain paths in the (P,Q)-plane. Moreover, this obviously

is the case also in (14) with wl' /2. It is evident in (12),

that in general, regardless of the values of w' and L" and a, this

phenomenon is to be expected.

The authors wish to acknowledge with much appreciation several helpful

and encouraging discussions on this problem with Professor L. B. Freund.
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ENERGY RELEASE RATE CALCULATIONS FOR AN INTERFACE

MODE III EDGE CRACK BASED ON A CONSERVATION INTEGRAL

BY

A. Nachman i and J. Walton 2

ABSTRACT

The M-integral is applied to the calculation of energy

release rates for interface edge cracks of the Mode III type:

specifically, for an edge crack along the interface between

two elastic wedges of different opening angles and dissimilar

elastic properties, and that is subjected to point loads at

the apex, a relation is derived along the length of the crack,

the energy release rate of the crack, the applied loads, the

wedge angles and the material parameters.
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Norfolk, Virginia 23508. Supported in part by AFOSR Contract
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2 Department of Mathematics, Texas A&M University, College
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In this note we continue the work of [1], wherein

the M-integral was used to calculate energy release

rates for interface edge cracks of the Mode I and Mode I!

types. However, here we turn our attention to a Mode III

interface edge crack as might arise in the torsion of two welded rods.

The physical scenario is identical to [I] save for the

loading at the wedge apexes. In this investigation we

impose point shear stresses (31) of magnitudes PI and P2 .

See Figure 1. This loading will generate only out-of-plane

displacements, u3 (x, y). Moreover, u3(x, y) is a harmonic

function (or, mdre precisely, u , y and u x, Y)

are each harmonic functions in their respective wedges).

We take the same path for the M-integral as in [12.

As before, radial lines contribute nothing, the small
dP

circle around the crack tip contributes Z! C2], the inter-

face contributions cancel and we must only deduce the

contributions from the arcs near the tips and from the

large arc.

Since the edges near each tip are free, an analysis

of the near-tip field is equivalent to the analysis of a

single-material wedge subject to a shear-stress point load.

Clearly the displacement field for such a problem is

U 2 ) - A( 2 )in(r) (2)1 for the top wedce, say.

3
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The contribution to M from the arc near the too

tip is then

0
(2) (2) 2)2  

-r (2) (~2 )}wr((a )Cos a + a sin 9)u3, - u ! 3 i d O

f. 3132 sin Xj 2 31 3,i

hee (2) = u 2)A 2 cos 9 - B(2)sin 32 and a(2)= u 7A A(2)sin 9 +
where a32 r

31 r
8(2)

B cos 9j. A simple calculation shows that the integral

equals Ui2)w" (CB( 2 )J 2 - [A(2 )I2 }. Since ra ( ) d2 = -D cos w"2 0 rz"2 (

and fdr (2) -P s in (w") we have that A(2) = -P2cos( )
24 

r

and B(2) . -P2 sin(! ). Consequently, the contribution to M

2u (2)w"

from both near-tip arcs is

- p 2 Cos W11 P2 cos w'
2___ ____ 1 (1)au()w. 8u (- [ w1

The contribution from the large arc comes from the

analysis, as in [1l, of the far-field solution for two

wedges bonded together with no crack. Here the displacement

field in each wedge is likewise of the form u3 = C in(r) + 09.

Since the shear stresses corresponding to the above

displacement field are

16



a31 niacos e - T sin 9)
a31  ro r

(2a,b)
c D

(3 2  (sin 6 + 2 cos 9)

it follows that continuity of u3 and a32 at the interface

is assured when

(i) = C(2)

(..a,b)

(1) D(1) = (2)D(2)

We still need two more equations and these come from, as

in El], a force balance. Thus

fra~l dO + Jra31' do = -(P1 + P 2)
-W

(4a,b)

33 032

-v

Using (2a,b) and .(3a,b) we get

17



(I) 41(l) sin w' + 4(2) sin w"I

+ D( D(1)[Ccos w" - Cos w'] -(P1 + P2 )

(Sa,b)

C (1) (cos w' - 1) + Co()(l - cos I

+ L(1) D(1)Esin w' + sin w"j = 0

Consequently, the contribution to M from the large arc is

'I

21 (rC( 1 ) 2  rD(1)32  - I(2) f (c( 2 )2(2 (2) ,2

-w 0

U ! (l)w' C (i)32 _C (1)3 21 1(2)w,,( C 2)3 _2 C . 23
= 1 ( C - 2D ] _1 U C€  - [ ' ]}

We content ourselves with exhibiting the particulars

of the case w' = w = w. In this case -&aa;b)-, together with

the previous calculations, serves to give

dP Cos 2 p

1(P 1  + 22
2

_____________

2(u(1) + U )sin w  4(1)(2) Sin2w

18



We assume w/o 1.o.g. that ( 1 ) > U( 2 ) and then some algebra

will show that the level curves of (6) are rotated ellipses.

Thus, again, crack extension may result when the unloading

of P1 and P2 occurs along certain paths in the (P1 , P2) plane.

S19
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